CRANY

Converting the MPI application to a Hybrid OpenMP/MPI application

Task 2 Parallel Analysis, Scoping and Vectorization

e Investigate parallelizability of high level looping structures
e Often times one level of loop is not enough, must have
several parallel loops

e User must understand what high level DO loops are in fact
independent.
e Without tools, variable scoping of high level loops is very
difficult
e Loops must be more than independent, their variable usage must adhere to
private data local to a thread or global shared across all the threads

* Investigate vectorizability of lower level Do loops

* Cray compiler has been vectorizing complex codes for over
30 years

CRANY

Converting the MPI application to a Hybrid OpenMP/MPI application
Task 2 Parallel Analysis, Scoping and Vectorization (Cont)

e Current scoping tool, -homp_analyze, is meant to interface to
a code restructuring GUI called “reveal”. At this time, we need
to use cryptic output and massage it with editor/script.

e IdirS omp_analyze_loop

e In order to utilize scoping tool for loops that contain

procedures the program library need to be employed
e -hwp —hpl=vhone.aid

e This will do an initial pass of the code, checking for error and then at the
load it will build the program library and perform the analysis

e Compiler will be very conservative

» <object_message kind="warn">LastPrivate of array may be
very expensive.</object_message>

Main window of reveal

WReveal 0.

Eile

¢ ‘Full List < ‘
P riemann.f90
P states.f90
D sweepx1.f90
D sweepx2.f90
D sweepy.f90
v osw 90
v SWEEPZ
Loop @22
Loop @23
Loop @24
Loop @26
[Coop@ss |
Loop @55
Loop @62
Loop @63
L ann @74
Info

vhone.aid loaded

w About Reveal) | ¥ vhone.aid €

&

B

]

#endif

doj=1.js

doi=1,isz
radius = zxci+mypez ‘isz)
theta = zyc(+Hmypey 'js)
stheta = sintheta)
radius = radius * stheta

! Put state variables into 1D arrays, padding with 6 ghost zones

dom =1, npez
dok=1, ks
n=k+ks'im-1) +6
1in) = recv3(1,j,k.i,m)
pin) = recv3,jk.im)
uin) = recv3(S,jk.i.m)
vin) = recv33,jk.i.m)
win) = recv3id,jk.i,m)
fin) = recv3iB,jk.i.m)
enddo

enddo

do k =1, kmax
n=k+6
xa (n) = zzalk)
dx (n) = zdz (k)
xalin) = zzalk)

CRANY

THE SUPERCOMPUTER COMPANY

Help

(<]

Scoping window

- Type

Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar
Scalar

Scalar

Scope
Unknown

Private
Private
Private
Private
Private
Private
Private
Private
Private
Private

Private

Search:

Dump Data

Close

CRRANY

THE SUPERCOMPUTER COMPANY

CRANY

THE SUPERCOMPUTER COMPANY

At this point we should have some idea of the major arrays

=

Which arrays are use in the major computational routines?

N

Where else are these arrays used?

w

Are other arrays used with identified arrays
Gotol

I
' e e

This is extremely difficult in Fortran and more so in C
and C++. We could really used a tool that identified
where in the code certain range of memory was used.

CRRANY

THE SUPERCOMPUTER COMPANY

What we end up finding out

Private Variables in module, need to use Threadprivate

!Somp threadprivate (r, p, e, q, u, v, w,xa, xa0, dx, dx0, dvol,f, flat,para,radius, theta,
stheta)

real, dimension
real, dimension

maxsweep) :: ¥, p, €, 49, U, v, W ! fluid variables
maxsweep) :: xa, xal0, dx, dx0, dvol ! coordinate values

Py

real, dimension (maxsweep) :: f, flat ! flattening parameter
real, dimension (maxsweep,5) :: para ! parabolic interpolation
coefficients

real :: radius, theta, stheta

Reduction variable down callchain, need to use
1SOMP CRITICAL;'!'$SOMP END CRITICAL

hdt = 0 ,94che
do n = nmin-4, nmax+4
Cdtdx (n) = sqgrt(gam*p(n)/r(n))/(dx(n)*radius)
enddo
!Somp critical
do n = nmin-4, nmax+4
svel = max (svel,Cdtdx (n))
enddo

!Somp end critical
do n = nmin-4, nmax+4
Cdtdx (n) = Cdtdx(n)*hdt
fCdtdx(n) = 1. - fourthd*Cdtdx (n)
enddo

CRRANY

THE SUPERCOMPUTER COMPANY

Task 3 Moving from OpenMP to OpenACC

Things that are different between OpenMP and OpenACC
Cannot have CRITICAL REGION down callchain
Cannot have THREADPRIVATE
Vectorization is much more important

Cache/Memory Optimization much more important
No EQUIVALENCE

Currently both OpenMP and OpenACC must be included in the source

#ifdef GPU

I$acc parallel loop private(k,j,i,n,r, p, €, q, u, v, w, svel0,&

ISacc& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&
I$acc& reduction(max:svel)

#else

ISomp parallel do private(k,j,i,n,r, p, €, g, u, v, w, svel0,&

ISomp& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&
ISomp& reduction(max:svel)

#endif

Resultant Hybrid S3D Performance

900
Weak Scaling, Lower is Better
800
W
a
I 700
1
C
1
600
o —
o o
k
500
T
i
—— Hybrid S3D
m
400
e -l All MPI S3D
S
300
e
C
o
n 200
d
S
100
0 T T T T T T T T T 1
o 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Number of cores (12 cores/node)

Supercomputing 2012 Nov 12, 2012 12/12/12

NVIDIA, Cray, PGI, CAPS Unveil
‘OpenACC’ Programming
Standard for Parallel Computing

Directives-based Programming Makes
Accelerating Applications Using
CPUs and GPUs Dramatically Easier

ty J

c=ay PGl cars

Supercomputing 2012 Nov 12, 2012 12/12/12 9

NVIDIA.

CRANY

OpenACC.

DIRECTIVES FOR ACCELERATORS

e A common directive programming model for today’s GPUs
e Announced at SC11 conference

.- . The
o Offers portability between compilers au,CK‘,Z'g;ggNicw e
Eg
e Drawn up by: NVIDIA, Cray, PGI, CAPS UQZ';,O;;;Aim,Ca,,Mp,og,ﬁm HbE

e Multiple compilers offer portability, debugging, permaner ,“C*:an,dfo;ifn’ff’é’;’ii?o/:ézg‘Z’Siﬁu;fa“’
e Works for Fortran, C, C++
e Standard available at www.OpenACC-standard.org

e |nitially implementations targeted at NVIDIA GPUs
e Current version: 1.0 (November 2011)

e Compiler support:
e Cray CCE: partial now, complete in 2012
* PGI Accelerator: released product in 2012
e CAPS: released product in Q1 2012

by 4 '
CAPS CRANY @& NVIDIA. The Portland Group

THE SUPERCOMPUTER COMPAN

CRANY

THE SUPERCOMPUTER COMPANY

Using directives to give the compiler information

e Developing efficient OpenMP regions is not an easy task;
however, the performance will definitely be worth the effort

e The next step will be to add OpenACC directives to allow for
compilation of the same OpenMP regions to accelerator by
the compiler.

e With OpenACC data transfers between multi-core socket
and the accelerator as well as utilization of registers and

shared memory can be optimized.
e With OpenACC user can control the utilization of the
accelerator memory and functional units.

CRANY

THE SUPERCOMPUTER COMPANY

Task 3 Correctness Debugging

e Run transformed application on the accelerator and investigate the
correctness and performance

* Run as OpenMP application on multi-core socket
e Use multi-core socket Debugger - DDT

e Run as Hybrid multi-core application across multi-core socket and
accelerator
e Tools That will be needed

» Information that was supplied by the directives/user’s interaction with
the compiler

CRANY

THE SUPERCOMPUTER COMPANY

Task 4 Letting the Compiler do all the work

The only requirement for using the !Sacc parallel loop is that the user
specify the private variables and the compiler will do the rest.

If subroutine calls are contained in the loop, -hwp must be used.

#ifdef GPU

I$acc parallel loop private(k,j,i,n,r, p, e, q, u, v, w, svel0,&

I$acc& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&
ISacc& reduction(max:svel)

#else

ISomp parallel do private(k,j,i,n,r, p, e, g, u, v, w, svel0,&

ISomp& xa, xa0, dx, dx0, dvol, f, flat, para,radius, theta, stheta)&
ISomp& reduction(max:svel)

#endif

The Compiler will then show:
All data motion required to run the loop on the accelerator.
Show how it handled the looping structures in the parallel region

CRRANY

THE SUPERCOMPUTER COMPANY

Compiler list for SWEEPX1

45.
46.
47.
48.
49
50.
51 .
52 c
53
55 ¢
56 ¢
57 o
58.
SIOR
B2 .
©3c
64.
65.
66.
67
68.
69.
71
12
73
4.
75
76.
77 .
79
80.
(Sl
82.

QOO0

QOO OUUOUUUOUUO OO OO uuuuuyu Y
W W Wwwwwwwwwwwwwwwwwwwww

(oo yTe pute Ryt e yTe uto JutoJte Ruto B(o BNVO]

gr2 I--> call ppmlr

#ifdef GPU
!Sacc parallel loop private(k,j,i,n,r,
!Saccé xa, xa0, dx, dx0, dvol, f£f,
!Saccé reduction (max:svel)
#else
!Somp parallel do private(k,j,i,n,r,
! Somp& xa, xal0, dx, dx0, dvol, £,
! Somp & reduction (max:svel)
#endif
do k =1, ks
do jJ =1, Js

theta=0.0

stheta=0.0

radius=0.0

do i = 1,imax

+ 6

svelO, &
theta,

L, &, 494, U, v, w,

flat, para,radius, stheta) &

svelO, &
theta,

L, €, 94, u, v, w,

flat, para,radius, stheta) &

Q X QO X th = < T R B
XX o
o O

85 8B 8B B8B83 B8B83 38338333 k-
I

Il
=
m
X

mallp,p(n))
(r(n) *gamm) +0.5* (u (n

~ o~ o~~~ o~~~ o~~~ —~

e) =24 (A
enddo

! Do 1D hydro update using PPMLR

(svelO,

xal0, dx,

) ¥* 24w (n) **2)

sweep, nmin,
dx0, dvol, £,

nmax, ngeom, nleft,
flat, para,radius,

nright, r,
theta,

pl eI wl &

stheta)

gq, u, VvV,

xa,

CRRANY

THE SUPERCOMPUTER COMPANY

Compiler list for SWEEPX1

ftn-6405 ftn: ACCEL File = sweepxl1.f90, Line = 46
A region starting at line 46 and ending at line 104 was placed on the accelerator.

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin) .

zro" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "zpr" to accelerator, free at line 104
(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepxl1.f90, Line = 46
If not already present: allocate memory and copy whole array "zux" to accelerator, free at line 104
(acc_copyin).

ftn-6418 ftn: ACCEL File = sweepxl1.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin) .

zuy" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array
(acc_copyin).

zuz" to accelerator, free at line 104

ftn-6418 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "zfl" to accelerator, free at line 104
(acc_copyin).

ftn-6416 ftn: ACCEL File = sweepxl.f90, Line = 46
If not already present: allocate memory and copy whole array "sendl" to accelerator, copy back at line
104 (acc copy) .

CRAlY"

THE SUPERCOMPUTER COMPANY

Task 5 Fine tuning of accelerated program

e Understand current performance bottlenecks
* |s data transfer between multi-core socket and accelerator a
bottleneck?
* |sshared memory and registers on the accelerator being used
effectively?

* |s the accelerator code utilizing the MIMD parallel units?

e |sthe shared memory parallelization load balanced?

e |sthe low level accelerator code vectorized?

e Are the memory accesses effectively utilizing the memory bandwidth?

Inda

Profile of Accelerated Version 1

CRRANY

THE SUPERCOMPUTER COMPANY

| Function
| PE=HIDE
| Thread=HIDE

| Total

| sweepy .ACC KERNEL@1i.47
| sweepx2 .ACC _KERNEL@1i.46
| sweepz .ACC_KERNEL@1li.67
| sweepxl .ACC KERNEL@1i.46
| sweepy .ACC COPY@1i.47

| sweepz .ACC COPYQ1li.67

| sweepy .ACC COPY@1i.129

| sweepxl .ACC COPY(@11i.46

| sweepx2 .ACC COPYQ@1i.46

| sweepx2 .ACC _COPY@11.107
| sweepxl .ACC COPY@1i.104
| sweepz .ACC COPY@11i.150
525 1
.205
.283
.266

| vhone .ACC_COPY@1i
| vhone .ACC COPY@1i
| vhone .ACC_COPY@1i

Table 1: Time and Bytes Transferred for Accelerator Regions
Ace | Acc | Host | Acc Copy | Acc Copy | Calls
Time$% | Time | Time | In | out |
I | | (MBytes) | (MBytes) |

100.0% | 58.363 | 67.688 | 24006.022 | 16514.196 | 14007
| __
| 30.3% | 17.697 | 0.022 | == of == [1000
| 22.0% | 12.827 | 0.010 | -— | -— | 500
| 21.2% | 12.374 | 0.013 | =S == | 500
| 14.0% | 8.170 | 0.013 | -— | == | 500
| 3.9% | 2.281 | 1.161 | 12000.004 | == o 1000
| 2.0% | 1.162 | 0.601 | 6000.002 | == | 500
| IN8G | 0.953 | 0.014 | -- | 6000.004 | 1000
| 1.0% | 0.593 | 0.546 | 3000.002 | Salll 500
| 1.0% | 0.591 | 0.533 | 3000.002 | == | 500
| 0.8% | 0.494 | 0.015 | -- | 3000.002 | 500
| 0.8% | 0.485 | 0.007 | -- | 3000.002 | 500
| 0.8% | 0.477 | 0.007 | -- | 3000.002 | 500
| 0.4% | 0.250 | 0.016 | -- | 1503.174 | 500
| 0.0% | 0.005 | 0.005 | 6.012 | -— | 1
| 0.0% | 0.001 | 0.000 | == | 6.012 | 1
| 0.0% | 0.001 | 0.000 | == | 5.000 | 1

| vhone .ACC_COPY@1i

Differences in runtime

All MPI on 4096 cores
Hybrid 256 nodesx16 threads
Rest Hybrid 256x16 threads

OpenACC 256xgpu

43.01 seconds
45.05 seconds
47.58 seconds
105.92 seconds

CRRANY

THE SUPERCOMPUTER COMPANY

Task 4 Fine tuning of accelerated program

e Tools that will be needed:
* Compiler feedback on parallelization and vectorization of input
application
e Hardware counter information from the accelerator to identify
bottlenecks in the execution of the application.

e Information on memory utilization
e Information on performance of SIMT units

Several other vendors are supplying similar performance gathering tools

Useful tools contd. -

e Craypat profiling
e Tracing: "pat_build -u <executable>" (can do APA sampling first)

e "pat_report -O accelerator <.xf file>"; -T also useful
e Other pat_report tables (as of perftools/5.2.1.7534)

e acc_fu flat table of accelerator events
e acc_time call tree sorted by accelerator time
e acc_time_fu flat table of accelerator events sorted by accelerator time

e acc_show by ct regions and events by calltree sorted alphabetically

Supercomputing 2012 Nov 12, 2012 12/12/12

CRRANY

THE SUPERCOMPUTER COMPANY

Run and gather runtime statistics

Table 1: Profile by Function Group and Function
Time % | Time |Imb. Time | Imb | Calls |Group
| | | Time % | | Function
| | | | | PE='HIDE'
| | | | | Thread='HIDE'
100.0% | 83.277477 | == | -- | 851.0 |Total
| __
| 51.3% | 42.762837 | == | -- | 703.0 |ACCELERATOR
- | == 757" a2ttt e
|| 18.8% | 15.672371 | 1.146276 | 7.3% | 20.0 |recolor .SYNC COPY@li.790€not good
|l 16.3% | 13.585707 | 0.404190 | 3.1% | 20.0 |recolor .SYNC COPYRli.793€not good
| 7.5% | 6.216010 | 0.873830 | 13.1% | 20.0 |lbm3d2p d .ASYNC KERNELQ@1i.1l16
| | 1.6% | 1.337119 | 0.193826 | 13.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.119
| | 1.6% | 1.322690 | 0.059387 | 4.6% | 1.0 [1lbm3d2p d .ASYNC COPY@1i.100
| | 1.0%5 | 0.857149 | 0.245369 | 23.7% | 20.0 |collisionb .ASYNC KERNEL@1i.586
| | 1.0% | 0.822911 | 0.172468 | 18.5% | 20.0 |lbm3d2p d .ASYNC KERNEL@1li.114
| 0.9% | 0.786618 | 0.386807 | 35.2% | 20.0 |injection .ASYNC KERNEL@1i.1119
| | 0.9% | 0.727451 | 0.221332 | 24.9% | 20.0 |lbm3d2p d .ASYNC KERNEL@1i.118

CRANY

THE SUPERCOMPUTER COMPANY

Keep data on the accelerator with acc_data region

!Sacc data copyin(cix,cil,ci2,ci3,cid4,ci5,ci6,ci7,ci8,ci9,cil0,cill, &
!Sacc& cil2,cil3,cil4, r,b,uxyz,cell, rho,grad, index max, index, &
!Sacc& ciy,ciz,wet,np,streaming sbufl, &

!Saccé& streaming sbufl, streaming sbuf2,streaming sbuf4, streaming sbuf5, &
!Saccé streaming sbuf’s,streaming sbuf8s,streaming sbuf9n, streaming sbufl0ls, &
!Saccé streaming sbuflln, streaming sbufl2n,streaming sbufl3s,streaming sbuflin, &
!Saccé streaming sbuf7e,streaming sbuf8w, streaming sbuf9e, streaming sbuflle, &
!Saccé streaming sbufllw, streaming sbufl2e,streaming sbufl3w, streaming sbufldw, &
!Saccé& streaming rbufl, streaming rbuf2,streaming rbuf4, streaming rbuf5, &
!Saccé& streaming rbuf7n,streaming rbuf8n,streaming rbuf9s, streaming rbuflln, &
!Saccé streaming rbuflls, streaming rbufl2Zs,streaming rbufl3n,streaming rbuflis, &
!Saccé& streaming rbuf7w,streaming rbuf8e,streaming rbuf9w, streaming rbufllw, &
!Saccs streaming rbuflle, streaming rbufl2w,streaming rbufl3e, streaming rbuflde, &
!Saccé& send e,send w,send n,send s,recv_e,recv_w,recv_n,recv_s)

do ii=1,ntimes

O 0 O

call set boundary macro press2
call set boundary micro press
call collisiona

call collisionb

call recolor

CRRANY

THE SUPERCOMPUTER COMPANY

Now when we do communication we have to update the host

!Sacc parallel loop private(k,j,1)
deosy=0, local 1y-1
do 1=0,local 1x-1
if (cell(i,j,0)==1) then

grad (1i,3J,-1) = (1.0d0-wet) *db*press
else
grad (i,]J,-1) = db*press
end if
grad (i,3,1z) = grad(i,]J,1z-1)
end do
end do

!Sacc end parallel loop

!Sacc update host (grad)
call mpi barrier (mpi comm world,ierr)
call grad exchange

!Sacc update device (grad)

But we would rather not send the entire grad array back — how about

